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Outline

• Reminder of the SM Higgs Mechanism

• Higgs search overview at the CMS

• A brief history of “Higgs” discovery

• Highlights of the latest CMS Higgs studies

• Methods to probe the XVV interactions

• The spin and parity measurements of the 
new particle

• Higgs studies in WW/ZZ decays at CMS

• Prospects of the future LHC Higgs 
measurements
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• The SM describes fundamental constituents of matter and 
interactions elegantly through gauge invariance

• The fundamental matter is made of spin 1/2 fermions

• Interactions are mediated by spin 1 gauge bosons

• Requiring theory invariant under gauge transformations

- Electro-weak interactions: SU(2)⊗U(1)

- Strong interactions: SU(3)

• The SM has been highly predictive

• The discovery of the W/Z bosons and the rigorous precision 
measurements at the EWK scale

strong interactions

Ga
µ

Bµ,W i
µ

electro-weak interactions

The Successful SM
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The Incomplete SM

1. The fermions and bosons are massless as a consequence of the gauge invariance

• The electro weak symmetry must be broken when particles acquire mass

2. The SM has unphysical predictions of some physical observables

• Such as the WW longitudinal scattering amplitude violates unitarity

• Higgs mechanism (1960s): “spontaneous symmetry breaking in the EWK sector”

• Generate particle masses without perturbing the gauge invariance, ensures good high energy behavior

• This is by no means “the only way”, but by far the most “economical way”
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V (φ)

φ

v =
�
−µ2/λ

The Higgs Mechanism (I)
• Spontaneous symmetry breaking mechanism: a simple example with scalar field

• Impose μ2 < 0 and λ > 0 →  There is no mass term! 

• The potential is invariant under parity 

• The ground state (vacuum) v breaks the parity symmetry

• Expand the field near the vacuum to study the particle spectrum 

- We now have a mass term!
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vacuum expectation value
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The Higgs Mechanism (II)

• The Higgs mechanism, “electroweak symmetry 
breaking mechanism in the SM”

• SU(2) complex scalar doublet with 4 real components

• Construct a potential that is invariant under 
electroweak symmetry, but not its ground state 

• Expanding the fields near the vacuum leads to 

- one real Higgs field “Higgs boson” 

- the other 3 get “eaten” by W/Z to generate the 
mass and longitudinal polarizations of W/Z

• The fermions acquire masses by Yukawa couplings 
with the Higgs field

• WW longitudinal scattering amplitude unitarized by 
HWW interaction

• EWSB → one physical scalar Higgs boson

• Its mass is the only unknown parameter
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Direct Higgs Searches Prior to the LHC

• Large Electron Positron (LEP)

• The electron-positron collider that ran until ~2000 at a center-of-mass energy up to ~ 209 GeV

• It excludes the SM Higgs with mass < 114.4 GeV at 95% C.L.

• Tevatron

• The  proton--anti-proton collider that ran till 2011 at a center-of-mass energy ~ 2 TeV

• It excludes SM Higgs with mass in the range [156-177] GeV
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Constraints from EWK Precision Measurements

• EWK precision measurements can be used to constrain 
the Higgs mass if it contains high order corrections 
from Higgs loop

• e.g. the W mass measurement

• All relevant EWK precision measurements are 
combined in a global fit for the Higgs mass

• LEP EWK working group fit

- mH  < 161 GeV at 95% C.L.
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The production and decay of SM 
Higgs at the LHC
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The production and decay of SM 
Higgs at the LHC
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Successful end to Run1
~5/fb at 7 TeV 23/fb at 8 TeV
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The SM Higgs Production at the LHC
• The SM Higgs is mainly produced in gluon fusion at the LHC
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Detecting the SM Higgs Boson

• Higgs can be detected in multiple channels

• The relative sensitivity of each channel 
depends on experimental constraints

• Final states with multi-leptons and well 
measured objects are key channels

• Two of the most important channels for the 
Higgs search in the full mass range
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B = 3.8 T 

Tracker

ECAL

HCAL

Muon System

superconducting 
solenoid

Measuring Major Objects in CMS
• Particle-Flow (PF) event reconstruction in CMS

• Combine full information from all subsystems to give a coherent description of all stable particles

• Tracker performance and reconstruction of the tracks are cornerstones of PF

- precise reconstruction of charged particles and determination of the primary vertex position
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Roadmap to the Discovery
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First 7 TeV Collision March 30, 2010 CMS center
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What do we know of this 
new particle?

(As of May 2013)

26

Test the compatibility of data with the SM Prediction, 
starting from SM tensor structure assumption
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ZZ  125.8 ± 0.5 (stat) ± 0.2 (syst) GeV
γγ   125.4 ± 0.5 (stat) ± 0.6 (syst) GeV

Mass 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV
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Decay Expected 
Significance

Observed
 Significance

ZZ 7.1 σ 6.7 σ
WW 5.3 σ 3.9 σ
γγ 3.9 σ 3.2 σ
ττ 2.6 σ 2.8 σ
bb 2.2 σ 2.0 σ

3.4 σ

Mass 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV
Significance > 10 σ
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Fermion(top) coupling

W
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Overall signal strength Fermion vs W/Z couplings

Mass 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV
Significance > 10 σ
Productions Mainly from gg Fusion

Friday, June 28, 2013



 = 1)f! (WZ"
0 0.5 1 1.5 2

 ln
 L

#
- 2

 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Observed

Exp. for SM H

CMS Preliminary -1 19.6 fb$ = 8 TeV, L s  -1 5.1 fb$ = 7 TeV, L s

 VV (0/1 jet)%H 
f!, Z!, WZ"

What have we learned about the new particle?

30
SM!/!Best fit 

0 0.5 1 1.5 2 2.5

 0.28± = 0.92 µ       
 ZZ"H 

 0.20± = 0.68 µ       
 WW"H 

 0.27± = 0.77 µ       
## "H 

 0.41± = 1.10 µ       
$$ "H 

 0.62± = 1.15 µ       
 bb"H 

 0.14± = 0.80 µ       
Combined

-1 19.6 fb% = 8 TeV, L s  -1 5.1 fb% = 7 TeV, L s

CMS Preliminary
 = 0.65

SM
p

 = 125.7 GeVH m

W/Z coupling ratio relative to SM prediction

Test of
custodial 
symmetry

Overall signal strength

Mass 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV
Significance > 10 σ
Productions Mainly from gg Fusion

Decays Mainly ZZ/WW/γγ, evidence from bb/ττ

Friday, June 28, 2013



  V!
0 0.5 1 1.5

f!

-2

-1

0

1

2

95% C.L.

b b"H 

# # "H 

 ZZ"H 

 W
W

"
H

 

$ $ 
"H 

CMS Preliminary -1 19.6 fb% = 8 TeV, L s  -1 5.1 fb% = 7 TeV, L s

SM Higgs Fermiophobic Bkg. only

What have we learned about the new particle?

31

κi = gi

gi,SM

Mass 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV
Significance > 10 σ
Productions Mainly from gg Fusion

Decays Mainly ZZ/WW/γγ, evidence from bb/ττ
Couplings No significant deviations from SM Prediction

Test the deviations of couplings relative to the SM prediction
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Mass 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV
Significance > 10 σ
Productions Mainly from gg Fusion

Decays Mainly ZZ/WW/γγ, evidence from bb/ττ
Couplings No significant deviations from SM Prediction
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No assumption of SM couplings in 

the loop, with an overall BSM width
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Going beyond the SM Tensor 
Structure

33

What is the underlying physics that describes the interaction 
between the new particle and known SM particles?
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• A general description of the scattering amplitudes based on effective couplings

X→VV Scattering Amplitudes

34
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• A general description of the scattering amplitudes based on effective couplings

X→VV Scattering Amplitudes
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• A general description of the scattering amplitudes based on effective couplings

X→VV Scattering Amplitudes
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X→VV Scattering Amplitudes
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Experimental measurements of those tensor structures are crucial to 
confirm the SM Higgs mechanism or other new physics
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• A general description of the scattering amplitudes based on effective couplings

X→VV Scattering Amplitudes
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Experimental Methods to Probe the 
Tensor Structure 

 including the spin and parity of the new particle

39

Friday, June 28, 2013



• Full kinematics: total 12 degrees of freedom

• For a given m(4l), 7 mass-angular variables describe the full kinematics in COM

• The kinematic distributions of the variables depend on the X→VV scattering amplitudes

• Predictions can be made both from generators and analytical calculations

Full Kinematics Description in X→ZZ→4l

40

‣ invariant masses: 

‣ production angles:

‣ decay angles:

θ∗,Φ1

θ1, θ2,φ

mZ1,mZ2

Yanyan Gao, Andrei Gritsan et al,  Phys. Rev. D 81, 075002 (2010), 

Sarah Bolognese, Yanyan Gao, Andrei Gritsan et al, Phys. Rev. D 86, 095031(2012)
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• The scattering amplitude can also be written as the sum of all helicity amplitudes

• E.G. a Higgs like spin 0 resonance has 3 helicity amplitudes which are uniquely predicted by theory

• The helicity amplitudes can be directly probed in experimental angular distributions

• The full 7D differential cross-sections                                         can be analytically calculated and used 

to study the underlying X→VV interactions

X→VV Helicity Amplitudes

41

A00(�g,mZ1,mZ2)

A++(�g,mZ1,mZ2)

A−−(�g,mZ1,mZ2)

XZ Z

P(mZ1,mZ2, �Ω|m4�)
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X→VV Helicity Amplitudes

42

dσ ∼ |
�
a,b

AabPab(Ω)|2dmZ1dmZ2dΩ

A00(�g,mZ1,mZ2)

A++(�g,mZ1,mZ2)

A−−(�g,mZ1,mZ2)

XZ Z
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X→ZZ→4l
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H→WW→2l2ν

45

v̄l

vl

Dilepton, large MET, low Jet activity, no mass peak
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Analysis Challenges
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• Key in the analysis

• Optimize selections to reduce reducible background

• Exploit full kinematics to separate HWW and WW 

Analysis Challenges
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Events After the WW Selection
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• Exploit full kinematic phase space in eμ channel with less backgrounds (Drell-Yan)

• Dilepton invariant mass and transverse mass (ll+MET)

• Data in the background region can be used to constrain both background normalization and shape

H→WW Cross-section Extraction
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Summary of the Results
• The SM Higgs boson is excluded up to 600 GeV in the high mass range

• We observe an excess in the low mass region
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Kinematic Distributions in Signal Regions

• Closer look at the signal region, apply all cut-based selections except the variable plotted

• Kinematic distributions agree well with the SM Higgs + background hypothesis
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SM!/!Best Fit 
-1 0 1 2 3

-1signal strength, CMS preliminary, L = 24.4 fb

SM!/!Best Fit 
-1 0 1 2 3

DF 0-jet 8 TeV

DF 1-jet 8 TeV

SF 0-jet 8 TeV

SF 1-jet 8 TeV

DF 0-jet 7 TeV

DF 1-jet 7 TeV

SF 0-jet 7 TeV

SF 1-jet 7 TeV

Results in Different Final States
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H→ZZ→4l

59

The “golden channel” for both SM Higgs search and Higgs property measurements
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• The m(4l) is the most important variable

• Analysis is statistically limited (~0.8 signal events/fb) 

• Need to exploit full kinematics to improve the search sensitivity
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Analysis Overview
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Exp Bkg mH(126) Data

Total 9.4 18.6 25

Events between [120.5-131.5]

relatively simpler 
background composition

X
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• Full kinematics: total 12 degrees of freedom

• For a given m(4l), 7 mass-angular variables describe the full kinematics in COM

• These variables directly probe underlying physics (scattering amplitudes) of X→VV interaction

- Ideally they can be used to fit data to measure the underlying XVV couplings

Full Kinematics Description

61

‣ invariant masses: 

‣ production angles:

‣ decay angles:

θ∗,Φ1

θ1, θ2,φ

mZ1,mZ2
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• Selected signal models

• Main ZZ background
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Data points: Ideal MC events   Lines: Analytical Calculations
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Single Kinematic Discriminant for SM Higgs Search

• With current statistics, it is not feasible to compare directly the full 7D mass-angular variables

• We construct single kinematic discriminant for each m(4l)

• Matrix Element Likelihood Analysis

• Peak towards 1 for SM Higgs and toward 0 for the other processes

• Psig and Pbkg are calculated with two complementary approaches based on

• Analytical angular distribution

• Vector algebra matrix elements based on the 4-momenta of the final state particles

63

KD =
Psig

Psig + Pbkg
=

�
1 +

P bkg(mZ1 ,mZ2 , �Ω|m4�)
Psig(mZ1 ,mZ2 , �Ω|m4�)

�−1
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Effect of Kinematic Discriminants
• Including the kinematic discriminant improves the search sensitivity by ~ 15%
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Cut on KD > 0.5
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• The kinematic discriminant is combined with m(4l) for the Higgs search

• We observed an excess with a local p-value corresponding to 6.7σ (7.0σ expected)

H→ZZ Cross-section Extraction

65

 (GeV)l4m
100 110 120 130 140 150 160 170 180

D
K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.4

0.6

0.8

14e
µ4
µ2e2

CMS preliminary -1 = 8 TeV, L = 19.6 fbs  -1 = 7 TeV, L = 5.1 fbs

Data overlaid with Background

Friday, June 28, 2013



• The kinematic discriminant is combined with m(4l) for the Higgs search

• We observed an excess with a local p-value corresponding to 6.7σ (7.0σ expected)

H→ZZ Cross-section Extraction
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• The kinematic discriminant is combined with m(4l) for the Higgs search

• We observed an excess with a local p-value corresponding to 6.7σ (7.0σ expected)

H→ZZ Cross-section Extraction
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Explore the XVV Tensor Structures

• The current statistics does not allow a 
full measurements of the underlying 
tensor structure

• As a first step we can compare data 
with a few bench mark models

• Parity Odd 0-

• (simple) spin 1 and 2 scenarios

• The hypothesis separation relies on 
both background rejection and signal 
model separations

68
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Parity Results

• Parity (assuming spin 0)

• Data is more consistent with 0+

• disfavors a pure CP-odd state

• Fit the fraction of 0-

• CP violating component (g1, g4)

• Increasing important as luminosity goes up
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Explore Higher Spin Hypotheses
• Explore both ZZ and WW final states

• Data is more consistent with spin 0

• disfavors several spin-1 and 2 bench marks 

- with < 5% CLs value
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Explore Higher Spin Hypotheses
• Explore both ZZ and WW final states

• Data is more consistent with spin 0

• disfavors several spin-1 and 2 bench marks 

- with < 5% CLs value
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Summary and Outlook

75
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Is the particle the SM Higgs boson?

76

Mass 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV
Overall signal strength 0.80 ± 0.14

Couplings with SM particles Consistent with SM prediction within large errors

Spin and parity Data favors the SM prediction 0+
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Is the particle the SM Higgs boson?

• Still early to tell ← many impostors! 

• The spin and parity studies are currently model dependent and not conclusive

• The coupling measurements are not precise enough to test many other BSM scenarios

• Need more data to reveal its true nature and establish its connection with the EWSB

77

Predicted deviations in couplings compared to the SM Higgs mechanism

ΔhVV Δhtt Δhbb

mixed-in Singlet 6% 6% 6%

Composite Higgs 8% tens of % tens of %

MSSM <1% 3% 10%-100%

R. Gupta et al,
ariXiv:1206.3560

Mass 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV
Overall signal strength 0.80 ± 0.14

Couplings with SM particles Consistent with SM prediction within large errors

Spin and parity Data favors the SM prediction 0+
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How well can we measure the Higgs couplings at (HL)LHC?

• Higgs coupling measurements projected with two types of scenarios

• Scenario 1: systematic uncertainties stays the same

• Scenario 2:  theory uncertainties halved and experimental uncertainties scales with √L

78
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LS1 HL-LHC
2024-2034(?)

20/fb @ 8 TeV
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phase 1 
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nominal LHC HL-LHC
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How well can we measure the Higgs couplings at (HL)LHC?

• Higgs coupling measurements projected with two types of scenarios

• Scenario 1: systematic uncertainties stays the same

• Scenario 2:  theory uncertainties halved and experimental uncertainties scales with √L
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%
300 / fb 300 / fb 3000 / fb3000 / fb

%
Scenario 1 Scenario 2 Scenario 1 Scenario 2

Δhγγ 6.5 5.1 5.4 1.5

ΔhVV 5.7 2.7 4.5 1.0

Δhgg 11 5.7 7.5 2.7

Δhbb 15 6.9 11 2.7

Δhtt 14 8.7 8.0 3.9

Δhττ 8.5 5.1 5.4 2.0
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5/fb @ 7 TeV

100/fb
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300/fb@14 TeV 3000/fb at 14 TeV
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nominal LHC HL-LHC

Friday, June 28, 2013



Challenges on CMS in High Luminosity

• High luminosity → high pileup

• Expect on average 140 pile up interactions in the 
HL-LHC (7 times the current condition)

• The high performance of tracker has 
been the key element in maintaining 
our performance so far

• The high pileup environment poses severe 
challenges to the physics object performances

• Expect degradation in lepton efficiency, MET 
resolution and b-tag efficiencies etc

• Detector upgrades are necessary to maintain or 
improve current performance in face of high PU

• Especially the objects with low-medium pT, the 
typical decay products of the light new particle

• These upgrades are underway (pixel/
Tracker/HCAL/ECAL etc)

80
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event with 78 vertices reconstructed from a 
special high intensity run
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special high intensity run
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Conclusion
• After Run1, LHC discovered a light Higgs candidate with 125 GeV

• With current statistics, the new particle is consistent with a SM Higgs boson

• More data is needed to reveal the nature of this particle and eventually the EWSB mechanism

• LHC has planned high luminosity and high energy running in the next a couple of decades

• Precision measurements on the CP violating component (<~10% for 300/fb)

• Precision measurements on Higgs couplings ( <~ 10% with 300/fb)

• Together with some other positive NP signatures (hopefully), Higgs 
measurements can help shed light on the EWSB and the future of HEP
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H→γγ

H→WW/ZZ

H→bb/ττ

H→γγ

H→WW/ZZ

H→bb/ττ

H→WW/ZZ

H→γγ

H→bb/ττ

or or ?
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The WW Selection
• Two oppositely charged isolated leptons

• Large missing energy

• Different flavor (eμ) final state: 

- MET > 20 GeV

• Same flavor (ee/μμ) final state

- Combine the MET related variables in a 
MVA to maximize DY reduction

• Top veto

• Remove events with soft muons or b-jets

• Dilepton pT > 30 GeV

• Further reduce W/Z+jets and W/Z+γ/γ*

89

All bkg WW Top W+jets Drell-Yan WZ/ZZ W/Z+γ(*)

0-Jet 4233 ± 220 3146 ± 192 417 ± 45 334 ± 91 128 ± 22 118.1 ± 7.1 89 ± 22

1-Jet 2899 ± 152 976 ± 111 1369 ± 56 288 ± 83 131 ± 28 88.6 ±5.6 46 ± 12

2-Jet 3229 ± 137 473 ± 21 1865 ± 100 220 ± 58 579 ± 70 51.2 ± 3.5 41.3 ± 3.9

Expected 
backgrounds 
12/fb at 8 TeV

p1
T > 20 GeV p2

T > 10 GeV
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• W+Jets events are reduced by tight lepton identification and isolation criteria

• The residual background is due to jets faking the leptons

• The residual background is estimated in a data-driven way

• The systematic uncertainty is ~36%

• How well does the kinematics of the fake lepton progenitors in di-jet events match the W+Jets events

ν̄l

l+(l−)

W+Jets Background Estimation
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p p

tag jet

l+
(l
− )

FR Calibration
Di-Jet Events

in Data

Control 
Region

Tight-Loose

Signal
 Region

Tight-Tight

Fake Rate (FR)
Tight / Loose
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Same sign W+Jets Control Region
• Cross-check the data-driven method in a second W+jets 

control region “same sign events”

• Both normalization and kinematic shapes are well modeled ν̄l

l−
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• For low mass Higgs, there is a signal free WW control region to estimate WW background

• The systematic uncertainty is ~10%(20%) for 0(1)-Jet bin

• For high mass Higgs, there is no signal free region

• We rely on MC to estimate the WW background primarily for the cut-based

• For the shape based analysis, the WW yield is determined from the fit

WW Background Estimations
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HWW 
signal 
region 
(SR)

WW 
control 
region 
(CR)

dilepton invariant mass (GeV)

Theoretical uncertainties are assigned

1) PDF variations

2) QCD scale variations

3) Parton showering

Ndata
S = Ndata

C (NS/NC)MC
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• The top background is reduced by vetoing events with b-quark

• Top-tagging: look for b-quark signature (soft muons and b-tagged jets)

• The residual background contributes mostly to events with jets

- Top background in events with 0-jet is much smaller → better sensitivity

• The residual top background is estimated using data-driven methods

• The systematic uncertainty is ~20% (5%) in the 0-Jet (1-Jet) bin

• 0-Jet: theory calculations of relative tW and ttbar compositions

• the statistics in the top-tag control region

Top Background Estimation
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Kinematics in Top Enriched Region
• Perform the same signal fit on top enriched region

• different flavor events with 1-jet (b-tagged)

• Top in data is consistent with the data-driven background estimates
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• Understanding the Drell-Yan background is 
crucial in the ee/μμ channels

• This background arises due to mis-measured MET, 
which is difficult to model in MC

• Veto the events in the Z peak and apply tighter 
MET cut than eμ channel ⇒ worse sensitivity

• The residual Drell-Yan background is estimated

• Subtract the non-DY backgrounds such as WZ/ZZ 
(peaking) and Top and WW (non-peaking) in 
counting the events in Z-peak

• The systematic uncertainty is ~50%, main limiting 
factor in these channels

• mll modeling in MC ( Nout/Nin)

• statistics in the Nin(data)

Drell-Yan Background Estimation
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In Z-peak

Out Z-peak

Nin(data)× Nout

Nin
(MC)

MET
E mis-measured 
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• Wγ* comes from ISR and FSR

• The dileptons from the γ* internal 
conversions are generally of low pT

- One of the dilepton is easily mis-
reconstructed in the detector

• Low (mll, mT) signature

- Reduce by pT(ll) > 45 GeV, mT >80 GeV

• For mγ* > 12 GeV, It is included in WZ/γ*

• For low mγ* < 12 GeV, we use a dedicated 
MC with the cross-section normalized to 
data in 3-lepton control region

• Wγ*→l(μ+μ-)

• The systematic uncertainty is ~ 30%

• Compare e(μμ) and μ(μμ) k-factors

• Compare kfactors in different ranges of mll 
(test of the mll spectrum)

Wγ* Background
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Kinematic Distributions in Signal Regions (1-Jet)

• Closer look at the signal region, apply all cut-based selections except the variable plotted

• Kinematic distributions agree well with the SM Higgs + background hypothesis
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Systematics on Overall Yields 

• Overall signal efficiency uncertainty is ~20%

• dominated by theoretical uncertainties on missing higher order effects and PDF variations

• Overall background uncertainties are ~10% in the HWW signal region

• W+jets: ~ 36%

• Top: ~20% (0-Jet) and ~5% (1-Jet)

• Wγ*: ~30%

• Drell-Yan: ~50% (0-Jet), ~20% (1-Jet)

• For all background estimations based on MC prediction, consider 

• Luminosity: 4.4% for 8 TeV and 2% for 7 TeV

• Lepton selection efficiency (3-4%), momentum resolution (~2%)

• MET resolution ~2%

• Jet energy scale resolution ~2%
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Shape Systematic Uncertainties

• Instrumental Uncertainties

• Lepton selection efficiency and momentum scale

• MET and JES resolutions

• WW Background

• Difference between Madgraph and MC@NLO

• QCD Scale variations on the renormalization and factorization scales evaluated in MC@NLO

• PDF uncertainties (not included in HCP analysis, but verified afterwards)

• Wjets Background

• Fakerate derived with a different away jet pT threshold in the QCD data

• Top Background

• Difference between Powheg and Madgraph

99
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W+Jets, MadGraph+Pythia6

   ungroomed jet mass

CMS Simulation

High Mass Frontier H→WW→(lν)(qq/J)
• It is important to search for high mass 

resonances, even with the low mass Higgs 
candidate discovery

• The EWSB is not yet confirmed

• The m(WW) spectrum serves as an excellent 
probe to WW scattering amplitude unification 
and general doublet-Higgs models

• The hadronic decaying W is highly boosted 
into a single jet with high resonance

• For mH=600GeV/1TeV

-  ~65%/82% of the Whad decay products are 
contained in a cone of ΔR< 0.8

- Jet substructure technique is used to 
reconstruct the Whad in a single jet, 
reconstructed with Cambridge-Aachen 
algorithm with a cone of ΔR < 0.8
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Vector Boson Fusion Production

• The qq→H→WW channel provides a unique 
measurement on g(H→WW)

• VBF has a clean experimental signature

• The presence of two forward energetic jets

• After dedicated selections exploiting both 
forward jets signatures and Higgs decay 
kinematics,  S/B is ~ 1 for the low mass Higgs

• Current measurement is statistically limited

• Contribute significantly to the signal strength 
measurements in different productions

• increasingly important with more data
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H→ZZ→4l
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Highlights of H→γγ Results (I)

• The m(γγ) with each event weighted by the S/(S+B) value of its category
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Highlights of H→γγ Results (II)
• Observed local p-values
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Highlights of H→γγ Results (III)
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• Taking account of the correlation between the cut/MVA analysis (0.76), the compatibility between the MVA 
and cut-based analysis measurements of the signal strength is found to be within 1.5σ for the combined 7 
and 8 TeV measurement, and within 1.8σ for the 8 TeV measurement alone.
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